
Heterogeneous Platform for Stream Based
Applications on FPGAs
Jan Kloub, Tomáš Mazanec and Antonı́n Heřmánek
Institute of Information Theory and Automation of ASCR

Pod Vodárenskou věžı́ 4
182 08 Praha 8, Czech Republic
Telephone: (+420) 26605 2472

Fax: (+420) 26605 2511
Email: {kloub, mazanec, hermanek}@utia.cas.cz

Abstract—The complexity of embedded systems is ever in-
creasing, to support wide range of application domains. Dedi-
cated hardware provides improved performance but with limited
resources reusability and application scalability. Using higher
abstraction methods for hardware development shortens the
time to market. The concept of hardware objects (HWO) allows
for more efficient hardware resource reuse and scalability of
the target application. A single task of the application can be
mapped on an appropriate type of hardware structure. A single
hardware structure can be shared in time by several application
tasks; multiple instances of the same HW structure can be used
for concurrent computation. Uniform hardware object structure
shortens design time and simplifies design of target system
independently on application domain. The system could contain
a heterogeneous set of HWO instances to satisfy all application
domains.

I. INTRODUCTION

State-of-the art wearable consumer devices, such as smart
phones or tablets, support wide range of application domains
e.g. audio and video applications, satellite navigation and
digital data communications.

Design of such devices represents a three dimensional
problem where a trade off between performance, power con-
sumption and design cost has to be done. There is no universal
solution to satisfy all aspects of the problem. Customized hard-
ware solution brings performance, low power consumption but
limited reusability; general purpose solution (CPU) brings high
reusability but lower performance. As the computation time on
CPU is longer than on customized hardware, it consumes more
power.

One of possibilities to improve the reusability of the cus-
tomized hardware structures is to extract reusable computation
constructs from each application domain. Constructs are fully
customized and additional hardware allows for their reuse
in different applications. For example, the 2-D convolution
core can be used in many image processing applications
[5] (filtering, edge detection, weak classifier etc.), floating
point arithmetic unit can be used for vector operations [3],
complex arithmetic unit for signal transformations (FFT, Dis-
crete Wavelet Transform) or in digital communication (ADSL,
GSM, WiFi etc). Similar techniques are used for design of
application specific (vector) processors [9].

This paper presents system design using the hardware object
(HWO) concept. Each active part of application is mapped
on the hardware structure which provides appropriate object
methods. Let us note that the hardware resources can be
heterogenous while the structure is uniform.

A uniform HWO structure, described in [5], provides
consistent interface to the system which allows for more
efficient implementation of target application software part
and hardware functional compatibility. Several application
tasks can be computed concurrently if more HWO instances
are available or HWO can be shared in time if (partial)
dynamic reconfiguration is used [1]. Such system/architecture
corresponds to the concept of Software Defined Radio (SDR)
[7] and brings the possibility to develop new devices such as
cognitive radio [2] or smart mobile terminals.

The paper is organized as follow: Background and related
work is described in the section II, implementation of DAB
receiver physical layer is described in the section III and
implementation results are summarized in the section IV.

II. BACKGROUND AND RELATED WORK

To extract a set of common operations constructs for OFDM
communication systems, profiling of DVB-T2, DAB and
WiFi/WiMax applications were performed. Complex comput-
ing elements (CCEs) was implemented to support arithmetic
computation in complex domain for signal processing algo-
rithms used in digital communication systems. The structure of
CCE is based on a previous work on basic computing element
(BCE) [3] and graphic computing element (GCE) [5].

A simplified structure of GCE, BCE or CCE is presented
in Figure 1. The data flow unit (DFU) establishes a data chain
composed of input memory(ies), functional unit(s) and output
memory. When operation is started an address generators of
input and output memories are driven by the DFU. Linear
addressing and circular buffer addressing are supported. All
functional units are fully pipelined, to achieve high data
throughput for vector operations.

Interface and control logic (simple CPU) are uniform for
all computing elements in the system to allow application
tasks running independently on the given implementation of

2011 21st International Conference on Field Programmable Logic and Applications

978-0-7695-4529-5/11 $26.00 © 2011 IEEE

DOI 10.1109/FPL.2011.80

401



Fig. 1. The structure of computing elements (BCE, GCE, CCE)

DFU and functional units. More complex tasks have to be
decomposed to the elementary operations supported by the
DFU with sequencing controlled by the CPU firmware.

The resulting computing element types are used as HWO
instances for appropriate application domain.

III. DAB IMPLEMENTATION

The implementation of physical layer of Digital Audio
Broadcast, DAB, receiving system that corresponds to DAB
standard [4] was chosen as a case study for implementation
and testing of the complex computing element (CCE).

The CCE consists of the following functional units:
• Complex Adder
• Complex Multiplier
• Square Root
• Comparator
• FFT Core1

The real and imaginary parts of the complex number have
16-bit floating point representation. The 16-bit floating point
arithmetic is a compromise between amount of hardware
resources and precision. Data have 32-bit representation where
upper 16 bits are for real and lower 16 bits for imaginary
part of complex number. Implemented CCE has four memory
banks. The length of the memory banks was chosen with
respect to the longest DAB OFDM symbol size (2552 samples)
to 4096.

The following parts of the DAB receiver physical layer have
been implemented:

• Null symbol detection, frame synchronization and parti-
tioning

• symbol synchronization based on guard interval (GI)
• estimation of fractional and integer carrier frequency

offset (CFO)
• compensation of estimated CFO
• symbols partitioning
• guard interval removal
• symbol demodulation by FFT

1For target application performance increase the programmable Xilinx FFT
core were used instead of using standard functional units.

0 1000 2000 3000 4000 5000 6000 7000 8000
−50

−40

−30

−20

−10

0
Symbol sync in frame no.:1

L
A

M
B

D
A

 −
 λ

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.5

0

0.5

C
F

O
 −

 ε

Fig. 2. Joint time and frequency offset estimator outputs for symbol
synchronization and frequency offset (SNR = 50dB, ε → 0), red is
sync on tmax

• channel estimation and compensation
• frequency deinterleaving
All steps above, except the frequency deinterleaving, were

implemented using CCE structure. Frequency deinterleaving
was implemented in software on master processor (MicroB-
laze), and therefore it is not part of this paper.

Let us show, as a typical representative of the algorithms
used in our receiver implementation, the symbol synchroniza-
tion algorithm. Its mathematical description and implementa-
tion will be presented in the following text.

Joint time and frequency offset estimation [6], which is
commonly used because of its low complexity, has been used
in the DAB implementation. This algorithm evaluates a metric
λ(t) (1) composed of two correlation elements γ(t) and κ(t),
where the latter is exploited to determine the Null symbol
occurrence in the DAB frame. The metric is described as
follows:

λ(t) = |γ(t)|+ κ(t) (1)

where

γ(t) =

Ng−1∑
k=0

s(t+ k)s∗(t+ k +N) (2)

and

κ(t) = −1

2

Ng−1∑
k=0

(
|s(t+ k)|2 + |s(t+ k +N)|2

)
(3)

where s(t) is the input signal, t is discrete time index, (.)∗

is complex conjugation, N is the OFDM symbol size and Ng

is the guard interval size.
The estimator output, λ(t), peaks at the beginning of the

OFDM symbol as can be seen in Figure 2. Fractional CFO

402



−N
Z

N−tap

delay

[ ]*

2
|  |

2
|  |

sum
Ng

sum
Ng

(t)γ ε
^

& scale
arg

(t)λ

(t)κ

t max

−0.5 

|  |
conjugate

s (t)

signal

input

sync

frame

sync

symbols

sync pulse

offset

frequency

vec N,(C) vec N,(C) scalar,(R)

scalar,(R)

vec N,(R)

vec N,(R)

Fig. 3. Diagram of the joint time and frequency estimator

can be determined by the equation (4) from the γ(t) at the
peak positions.

ε̂ =
1

2π
arg (γ(tmax)) (4)

The joint time and frequency estimator can be described
with block diagram depicted in Figure 3. Each block of the
diagram is implemented by one or more consecutive vector
operations.

For example, the sumNg
block can be implemented as

sliding window summation described by equation (5).

sumNg
(t) = sumNg

(t− 1) + s(t)− s(t−Ng) (5)

Note: Such a solution can lead to numerical instability due
to round-off errors namely when the floating point number
representation is used. In our case, we use relatively short
vector lengths and regular reinitialization.

The CCE solves the equation (5) by four consecutive vector
operations as described by the following pseudo-code:

// Initial summation
D[1] <= SUM(A[1..Ng]);

// Subtract part
B[1..M-Ng] <= CUMSUM(A[1..M-Ng]);

// Additional part + Initial sumation
C[1..M-Ng] <= CUMSUM(A[1+Ng..M]) + D[1];

// Update sliding sum
A[1..M-Ng] <= SUB(C[1..M-Ng], B[1..M-Ng]);

where M is the input data length and A, B, C, D are the
CCE memory banks. The first instruction corresponds to initial
value of the sliding window, the second instruction computes
partial decrements of the initial window value and the third
computes partial increments plus the initial value. The last
instruction computes the result of sliding window summation.

All the rest of receiver algorithms are implemented in the
same way as shown in the sliding summation example.

The master processor stores the input data into the CCE
memory banks and calls the CCE methods to process the data.
Each of the method calls correspond to appropriate functional
block of the DAB receiver.

The presented solution uses CCE as HWO instances to im-
plement the following functional blocks: frequency estimator,

Task MUL ADD CMP SQRT FFT MEM
Freq. Est. 5 6 1 1 0 3056
Integer CFO 3 1 1 1 0 4101
FFT 0 0 0 0 1 0
Chan. Est. 1 0 0 0 0 4096
D-QPSK 2 0 0 0 0 6144
Summary 11 7 2 2 1 17397
CCE 1 1 1 1 1 16384

TABLE I
HARDWARE RESOURCES ESTIMATION FOR FULLY PIPELINED

IMPLEMENTATION WITH COMPARISON OF CCE CONFIGURATION

integer CFO detection, channel estimation & compensation,
OFDM symbol and D-QPSK demodulation.

The application starts as follows: first, the null symbol
detection and frame synchronization is performed using the
equation (3). This computation is performed on all input data
until the null symbol is detected. Next, the symbol time and
frequency offset estimation, as presented in equation (1), is
performed, where the computation is evaluated only at the
regions close to the symbol boundaries. The computation time
and data communications are significantly shortened and the
CCE can be used for another purpose (another HWO instance)
until next input data are ready.

The integer CFO can be modified during the runtime in the
same way. Wide frequency interval is scanned at the start up
and only short interval afterwards because frequency variation
is limited in real application.

To be able to evaluate the reuse ration of our approach, the
estimation of resources for the implementation using a com-
mon design methodology has been performed. Physical layer
of receivers is usually implemented as fully pipelined design
with either no or poor possibility of functional unit reuse. The
estimation of the required HW resources is evaluated as the
number of functional units (complex adder, multiplier etc.),
required for pipelined implementation of given algorithm.
The resource estimation for pipelined implementation and
comparison with CCE is summarized in Table I.

The pipelined design may run at the data sample rate
frequency or on higher frequency with clock enabling, where
the latter is more common because the data rate frequency
of communication systems is usually significantly lower than
clock rates of the current processor-based platforms. As a
consequence functional units are not fully utilized. Using
HWO concept, the high reusability of functional units is
allowed because the units can run at maximal clock rate, while
being shared in time between tasks.

IV. RESULTS

For evaluation of the DAB receiver physical layer imple-
mentation, the Xilinx development kit ”XtremeDSP Develop-
ment Platform Spartan-3A DSP 3400A Edition” [8] was used.
The system consists of the MicroBlaze master processor, two
instances of the CCE connected through the PLB bus running
at the 62.5 MHz clock rate. The data transfers are provided
by Xilinx Central DMA controller.

403



FPGA Resource CCE CCE-FFT
Slices 3279/23872 (13.7%) 2166/23872 (9.1%)
FFs 2350/47744 (4.9%) 2063/47744 (4.3%)
LUTs 4461/47744 (9.3%) 2359/47744 (4.9%)
BRAMs 36/126 (28.6%) 17/126 (13.5%)
DSP48A 0/18 (0%) 5/18 (27.8%)

TABLE II
COMPLEX COMPUTATION ELEMENTS HARDWARE RESOURCES

UTILIZATION SUMMARY (XILINX SPARTAN-3A DSP 3SD3400AFG676-4)

Implementation Computation Time [µs]
Sequential 55706.13
Parallel 23757.89
DAB Constraint 96000.00

TABLE III
ESTIMATED DAB FRAME COMPUTATION TIMES FOR SEQUENTIAL AND

PARALLEL IMPLEMENTATION SCENARIOS

The first CCE instance contains standard functional units
(adder, multiplier, etc.) and the second instance (CCE-FFT)
programmable Xilinx FFT core only. The 16-bit fixed point
FFT core is used where the floating to fixed point trans-
formation is performed directly in the hardware. The CCE-
FFT instance has been used to increase the performance of
the application. The CCEs hardware resource utilization is
summarized in Table II.

Physical layer of DAB receiver is composed of several tasks
(HWO methods) which have to be performed in each data
frame. The Table IV shows task computation times in CCEs
hardware. It is possible to perform some tasks concurrently, for
example, when the start of the frame is known, the frequency
estimator can run independently of the rest of tasks because
the positions of the symbols are known then.

We have evaluated the following two basic implementation
scenarios with respect to task parallelization:

• Sequential – All tasks are performed in successive se-
quence for each symbol.

• Parallel – Frequency estimator and symbol demodulation
(FFT) run in parallel to the other tasks. The symbol
demodulation is done in parallel for all symbols in the
frame.

Estimated computation times per frame of these scenarios
are presented in Table III. The presented computation times
are without any communication overhead. The DAB frame
constraint is 96 ms, so there is space for some overheads in
all presented cases.

The sequential version has been implemented for perfor-
mance evaluation. To measure the computation time precisely,
the Xilinx timer has been used. Measured frame computation
time is 77771 µs and data transfer time is 113484 µs (@62.6
MHz). The measured time includes software part of DAB
application running on the master processor. A significant
overhead of the application represents the data transfers. One
of the main reasons is the use of only one PLB data bus, which
is shared between CCE instances, master processor and DMA

Task Tasks per frame Exec Time [µs]
Freq. Est. 77 308.54
Integer CFO 1 740.24
FFT 76 284.10
Chan. Est. 1 101.70
D-QPSK & Chan. Compensation 75 126.88

TABLE IV
DAB TASKS PROFILING (@62.5MHZ; SCANNED INTERVAL = GI = 504

SAMPLES, INTEGER CFO = 2)

controller. Dedicated data paths or use of multiple PLB will
solve the problem and will be done in future work.

Very high computation construct reuse was achieved in the
presented implementation (see Table I for details), e.g. 11
times in case of multiplier and 7 times in case of adder.

V. CONCLUSION

This paper presented implementation of the Digital Audio
Broadcast receiver physical layer as the case study of the
hardware object concept. The hardware objects are directly
mapped on computing elements which have uniform structure.
The uniform structure of computing elements reduces design
time of a new class of hardware objects. An essential part
of computing element can be inherited (as in software object
implementation) and only small modification can be done to
support new object methods or its implementation or data
representation. The implemented CCE has been developed for
long vector operation used in communication applications.
High degree of hardware resources reuse with satisfactory
performance was achieved in the case study.

ACKNOWLEDGMENT

This work was supported by the SCALOPES project;
project number: Artemis JU 100029, MSMT 7H09005.

REFERENCES

[1] Grüll F. Meier N. Beyer A. Kebschull U. Abel, N. Parallel hardware ob-
jects for dynamically partial reconfiguration. pages 563–566, Heidelberg,
2008.

[2] P. Athanas. SDRF cognitive radio definitions,working document SDRF-
06-R-0011-V1.0.0, November 2007.

[3] Kadlec J. Bartosinski R. Kohout L. Daněk, M. Increasing the level of
abstraction in FPGA-based designs. pages 5–10, Heidelberg, 2008.

[4] European Telecommunications Standards Institute, 650 Route des Lu-
cioles, F-06921 Sophia Antipolis Cedex, France. ETSI EN 300 401
V1.4.1: Radio Broadcasting Systems; Digital Audio Broadcasting (DAB)
to mobile, portable and fixed receivers, publication edition, June 2006.
Reference REN/JTC-DAB-36.

[5] Honzı́k P. Daněk M. Kloub, J. Reconfigurable hardware objects for image
processing on FPGAs. page 121, Vienna, Austria, Apr 2010.

[6] G. Li and G. L. Stüber (Eds.). Orthogonal frequency division multiplexing
for wireless communications. Springer Science+Business Media, Inc., 1st
edition, 2006.

[7] W.H.W. Tuttlebee. Software Defined Radio, Baseband technology for 3G
Handsets and Basestations. John Wiley & Sons, Ltd, 1st edition, 2004.

[8] Xilinx Technical Repository. XtremeDSP Development Platform: Plat-
form: Spartan-3A DSP 3400A Edition, User Guide, September 2007.

[9] Jason Yu, Christopher Eagleston, Christopher Han-Yu Chou, Maxime
Perreault, and Guy Lemieux. Vector processing as a soft processor
accelerator. ACM Trans. Reconfigurable Technol. Syst., 2:12:1–12:34,
June 2009.

404


